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Abstract Aerosol indirect effects suffer from large uncertainty in climate models and among observations.
This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect
of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet
number concentration (Nc) and relative dispersion (ε, ratio of standard deviation to mean radius of the cloud
droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than
considering Nc alone. Given updraft velocity (w), ε increases with increasing aerosol number concentration
(Na) in the aerosol-limited regime, peaks in the transitional regime, and decreases with further increasing Na

in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and
reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ε further quantifies the
relationship between the transitional Na and w that separates the aerosol- and updraft-limited regimes.

1. Introduction

Twomey [1974, 1977] pointed out that an increase in aerosol number concentration (Na) leads to increases in
cloud condensation nuclei (CCN) and cloud droplet number concentration (Nc), which in turn reduces droplet
sizes and enhances cloud albedo when liquid water remains unchanged. Although the notion of droplet con-
centration increasing with increasing aerosol concentration (Na) is well understood qualitatively and several
parameterizations have been developed (hereafter number effect) (see Ghan et al. [2011] for a recent review),
the so-called aerosol indirect effects remain among the most uncertain climate forcings according to the lat-
est Intergovernmental Panel on Climate Change [2013] report. Furthermore, climate models tend to overesti-
mate the cooling of aerosol indirect effects and are more susceptible to aerosols compared to observations
[Lohmann and Lesins, 2002; Ruckstuhl et al., 2010]. Reducing model uncertainty and reconciling models with
observations continue to be a major challenge facing the climate community after decades of research.

Two microphysical factors have been proposed to be partially responsible for the tenacious problem. First, it
is well known that for a given updraft velocity (w), the dependence of Nc on Na is nonlinear and regime
dependent: Nc increases linearly with Na when Na is low, but the Nc-Na relationship becomes sublinear and
levels off when Na is high. Using an ensemble of detailed parcel model simulations over wide ranges of Na

and w, Reutter et al. [2009] further classified the nonlinear Nc-Na relationship into three distinct regimes
according to the ratio of w to Na: aerosol-limited regime, transitional regime, and updraft-limited regime.
Briefly, the aerosol-limited regime is characterized by high w/Na (≥ 10� 3m s�1 cm3), high supersaturation,
and strong (linear) dependence of Nc on Na but weak dependence of Nc on w; the updraft-limited regime
is characterized by low w/Na (≤ 10� 4m s�1 cm3), low supersaturation, and weak dependence of Nc on Na

but strong dependence of Nc on w; the transitional regime falls between the aerosol-limited and updraft-
limited regimes with sublinear dependence of Nc on both Na and w. Evidently, the magnitude and impor-
tance of the aerosol indirect effect depend highly on the aerosol-cloud interaction regime [Stevens, 2013].

Less understood is the second factor—dispersion effect whereby changes in aerosol properties alter the
spectral shape of the cloud droplet size distribution in addition to droplet number concentration (dispersion
effect hereafter). Liu and Daum [2002] showed, by analyzing data from marine clouds under clean and
polluted conditions, that increased Na leads to concurrent increases of Nc and relative dispersion (ε) of the
cloud droplet size distribution defined as the ratio of standard deviation to mean radius of the droplet size
distribution, and the enhanced ε negates the number effect and may be partly responsible for the
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overestimated indirect aerosol effect and the discrepancy between model estimates of the indirect aerosol
effect and those constrained by observations [Peng and Lohmann, 2003; Penner et al., 2006; Rotstayn and
Liu, 2003, 2009]. This finding of ε increasing with Na has been confirmed by subsequent observational studies
[Chen et al., 2012; Lu et al., 2007; Pandithurai et al., 2012; Peng and Lohmann, 2003], parcel model simulations
[Ching et al., 2012; Peng et al., 2007; Wood et al., 2002; Yum and Hudson, 2005], and theoretical analysis [Liu
et al., 2006]. The theoretical expression by Liu et al. [2006] extends the Twomey formulation [Twomey, 1959]
by adding an analytical expression that relates ε to the power law CCN spectrum and vertical velocity (w),
clearly revealing that increasing Na leads to concurrent increases of ε and Nc whereas increasing w increases
Nc but decreases ε. Lu et al. [2012] reported observational evidence for the increase of Nc and decrease of ε
with increasing w. On the other hand, several studies [Berg et al., 2011; Hudson et al., 2012; Ma et al., 2010;
Martins and Dias, 2009] reported conflicting observations of decreasing ε with increasing aerosols. The see-
mingly conflicting observations are still awaiting reconciliation [Hudson and Noble, 2014; Liu et al., 2014].

It is noteworthy that the studies reporting decrease of ε with increasing aerosols are mainly on clouds
affected by heavy pollution [e.g., Ma et al., 2010] or heavy biomass burning [Martins and Dias, 2009], as
opposed to the increase of ε with increasing Na being found mostly in clean or marine clouds. Thus, the con-
trasting observational dispersion effect seems to support the suggestion that the response of ε to aerosol
changes may be like that of Nc, exhibiting different behaviors of distinct regimes [Liu et al., 2014].
However, systematic consideration of ε in classification of aerosol-cloud interaction regime is lacking, and vir-
tually all the theoretical and modeling studies on dispersion effect have been limited to aerosol-limited and
transitional regimes. Filling this important gap is the primary objective of this paper. We systematically exam-
ine the codependence of ε and Nc on Na and w using an adiabatic parcel model. Our work extends Reutter
et al. [2009] in two aspects. First, Reutter et al. [2009] only examined the regime dependence of Nc; we add
the dispersion effect and consider Nc and ε together. Second, Reutter et al. [2009] focused on pyroconvective
clouds with Na ranging from 200 to 105 cm�3 and w from 0.25 to 20m s�1. We extend the ranges of both Na

(10 to 105 cm�3) and w (0.05 to 20m s�1) to cover the clouds under pristine conditions and with lower w as
observed in stratus clouds as well. As will become evident, these extensions permit a more complete under-
standing and characterization of aerosol-cloud interaction regimes and reconcile the conflicting observations
on dispersion effect; the results have vital implications for the roles of regime dependence and dispersion
effect in resolving the conundrum of aerosol indirect effects.

2. Description of Model and Simulation Setup

The new parcel model follows the widely used concept of “Lagrangian bin” [Howell, 1949] and contains full
treatment of droplet nucleation and condensation processes with the flexibility of user-specified aerosol size
distribution and detailed aerosol chemistry composition [Heymsfield and Sabin, 1989; Leaitch et al., 1986]. The
key physics of this model using in this study is same to other cloud parcel models: adiabatic updraft cooling
leads to supersaturation in the parcel, which drives water vapor to condense on existing wet particles. Vapor
diffusion process is described by condensational growth equation [Lamb and Verlinde, 2011]. The κ-Kohler
model is used to treat aerosol growth and droplet nucleation [Petters and Kreidenweis, 2007; Pöschl et al.,
2010]. The processes of droplet collision and coalescence, sedimentation and entrainment-mixing are not
considered in this study. The numerical scheme follows the ordinary differential equation solver released
in 2013 in Fortran 90 (VODE-F90), which is an extension of the well-known VODE [Brown et al., 1989], and
improves the performance of this model.

Because the focus of this study is on the effects of Na andw on cloud properties, for simplicity the input aero-
sol size distribution is assumed to be a lognormal distribution with geometric mean radius of 0.06μm and
geometric standard deviation of 1.5 [Reutter et al., 2009], and the aerosol chemical composition is assumed
to be sulfate ammonium with hygroscopicity parameter (κ) of 0.61 [Petters and Kreidenweis, 2007]. The parcel
starts at the altitude with air temperature of 10°C, air pressure of 919 hPa, and air relative humidity of 95%
according to similar studies [Ghan et al., 2011; Reutter et al., 2009; Xue and Feingold, 2004]. The number of size
bin is 200, and the time step is determined by the relationship of 1.0m/w [Saleeby and Cotton, 2004]. The size
bins are distributed logarithmically between 0.01μm and 1μm. As Reutter et al. [2009], this study focuses
primarily on the results at the level of maximum supersaturation.
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3. Regime Dependence of Aerosol-Cloud Interaction
3.1. Regime Classification

Current understanding and classification of the aerosol-cloud interaction regime is based predominantly on
the response of Nc to Na and w [Reutter et al., 2009]. Thus, to lend confidence in our model, we first examine
the dependence of Nc on Na and w and compare the results with Reutter et al. [2009]; we then examine the
dependence of ε on Na and w and analyze the results to improve regime classification. A total of 2500 cases
with different combinations of Na (50 values between 10 and 105 cm�3) and w (50 values between 0.05 and
20m s�1) are simulated. The results are summarized in Figure 1, which shows (a) maximum supersaturation,
(b) activation fraction, (c) Nc, and (d) ε as a joint function of Na and w. Also shown for comparison are the two
equations provided by Reutter et al. [2009] to distinguish between three different regimes of Nc dependence
according to their numerical simulations: solid black line for w/Na= 10�3m s�1 cm3 and dashed black line for
w/Na=10�4m s�1 cm3. According to Reutter et al. [2009], the aerosol-limited regime and updraft-limited
regime correspond to w/Na> 10�3m s�1 cm3 and w/Na< 10�4m s�1 cm3, respectively; between the two
lines lies the transitional regime. Evidently, the aerosol-limited regime is characterized by high w/Na

(>10�3m s�1 cm3), high supersaturation, and high activation fraction. In this regime, Nc is linearly propor-
tional to Na and largely independent of w. The updraft-limited regime is characterized by low w/Na

(<10�4m s�1 cm3), low supersaturation, and low activation fraction. In this regime, Nc depends mainly on
w, and largely independent of Na. In the transitional regime, the variables fall intermediary between the
aerosol- and updraft-limited regimes, and Nc depends nonlinearly on both Na andw. These results are largely
consistent with Reutter et al. [2009].

Figure 1d shows that not only the ε-Na relationship exhibits distinct regimes but also the regime dependence
is nonmonotonic: for a given value of w: ε first increases with increasing Na in the aerosol-limited regime but
decreases with increasing Na in the updraft-limited regime, with a peak occurring in the transitional regime.
The nonmonotonic regime dependence of ε on Na is worth emphasizing, as opposed to the nonlinear yet still

Figure 1. Joint dependence on aerosol number concentration (Na) and vertical velocity (w) of (a)maximum supersaturation,
(b) activation fraction, (c) cloud droplet number concentration (Nc), and (d) cloud droplet relative dispersion ε. The solid and
dashedblack linesdenote the expressionsobtainedbyReutter et al. [2009] todistinguishbetween thedifferent regimes: solid
black line: w = 10�3 Na; dashed black line: w = 10�4 Na.
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monotonic dependence of Nc on Na shown in Figure 1c. Equally worth emphasizing is that ε always peaks in the
transitional regime confined by the two expressions obtained by Reutter et al. [2009] based on the response of
Nc. The dependence of ε on w for a given Na exhibits stark difference with that of Nc as well; ε decreases with
increasing w when Na is low in the aerosol-limited regime but increases with increasing w when Na is high in
the updraft-limited regime. These unique features of ε-Na relationship as compared to Nc-Na relationship can
be better seen in Figure 2, which shows the dependence on Na of (a) maximum supersaturation, (b) activation
fraction, (c) Nc, and (d) ε at several selected values of w representative of the wide range examined. Note that
to improve the accuracy of simulated ε shown in this figure, time steps are 0.01 s for w of 5ms�1 and
10ms�1 and 1 s for other values of w. Five hundred size bins are used when w is 0.1ms�1.

3.2. New Regime Separation Equation

The distinct dependence of aerosol-cloud interaction regimes calls for simple expressions that can be used to
identify which regime the cloud in question lies in. The two expressions proposed by Reutter et al. [2009]
based on the Nc-Na relationship can be used for this purpose. Here we propose to simplify the problem by
taking advantage of the unique feature of ε peaking at a certain value of Na for a given w, which indicates
that the regime transition of the ε-Na relationship is much sharper than the Nc-Na relationship. The point of
peak ε can be defined as the transitional point, and the relationship between the pair of Na and w at the
transitional point can be used to simply separate aerosol-limited from updraft-limited regimes.

Figure 3 shows the relationship between the transitional aerosol concentration (Na*) and updraft velocity (w*)
obtained from all the simulations, along with a line representing the linear regression equation that divides
the aerosol-limited and updraft-limited regimes:

w* ¼ 5:298�10�4N�
a (1)

where w* is in unit m s�1 and Na* is in unit cm�3. The aerosol-limited and updraft-limited regimes lie above
and below the line described by equation (1), respectively. Also shown for comparison are the two bordering

Figure 2. Dependence on aerosol number concentration (Na) of (a) maximum supersaturation, (b) activation fraction,
(c) cloud droplet number concentration (Nc), and (d) cloud droplet relative dispersion (ε) at selected values of updraft
velocity (w).
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expressions (black solid and dashed
lines) given by Reutter et al. [2009] based
on the dependence of Nc on Na. It is
obvious that the new ε-based regime
equation falls intermediately between
the two Nc-based regime expressions
bordering the aerosol-limited and
updraft-limited regimes, supporting
the use of equation (1) to separate
aerosol-limited regimes from updraft-
limited regimes.

3.3. New Physical Understanding

The nonlinear dependence of Nc on Na

and w is well studied and understood
physically. Less well studied and under-
stood is the dependence of ε on Na

and w. Liu and Daum [2002] relates the
behavior of increasing ε with increasing
Na but decreasingw to enhance compe-
tition for water vapor and slowdown of

condensational narrowing in the presence of high aerosol loading or weak updraft. A number of subsequent
studies with adiabatic parcel models [Peng et al., 2007; Yum and Hudson, 2005] have confirmed this mechan-
ism by showing that as Na increases, the increase of εwith increasing Na arises from simultaneous increase of
standard deviation and decrease of mean radius of the droplet population. As an extension, Liu et al. [2006]
further put this mechanism on a theoretical footing by presenting an analytical formulation that extends the
Twomey analytical expression for Nc to include ε as well.

However, this mechanism only works for the aerosol-limited regimes; the decrease of ε with further increas-
ing Na in the updraft-limited regime seems conflicting with the established explanation and somewhat
counterintuitive, calling for deeper exploration. It is known that droplet nucleation and subsequent conden-
sational growth depends on the balance between the parcel supersaturation and the particle equilibrium
supersaturation, and the droplet size distribution is highly related to the size distribution of radius growth
rate [Srivastava, 1991]. To understand the regime behaviors, Figure 4a shows particle radius growth rate as
a function of radius at three typical value of Na: Na= 50 cm�3 in aerosol-limited regime, Na=2.2 × 103 cm�3

Figure 3. Relationship between the transitional aerosol number concentra-
tion (Na*) and the transitional vertical velocity (w*). The blue dots denote
the model simulations from Figure 1, and the red solid line represents the
linear fit w* = 5.298 × 10�4Na*. The solid and dashed black lines are the
same as Figure 1.

Figure 4. (a) Radius growth rate as a function of radius at three typical values of aerosol concentration (Na) representing
aerosol-limited regime (green), updraft-limited regime (blue), and at the transitional point (red), respectively. Vertical
velocity (w) is 1.0m s�1. (b) Joint dependence on Na and w of mean droplet equilibrium supersaturation. The dashed line
separates the regimes based on equation (1).
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in transitional regime and Na= 5.0 × 104 cm�3 in updraft-limited regime. Figure 4a shows that when Na is low
in aerosol-limited regime, the droplet radius growth rate decreases with increasing radius and when Na is
high in the updraft-limited regime, the droplet radius growth rate increases with increasing radius. Based
on condensational growth theory (see detailed derivation in Appendix A), the first derivative of radius growth
rate to radius for each particle relies on the “driving force”—the differences between parcel supersaturation S
and particle equilibrium supersaturation Sk. Comparison between Figures 1a and 4b shows that in aerosol-
limited regime S is much larger than Sk, which leads to a large driving force, negative dependence of growth
rate on radius (the dominance of the first term in equation (A3) in Appendix A) and condensational narrow-
ing. As Na increases, condensational narrowing in aerosol-limited regime slows down, leading to increasing ε
with increasing Na [Liu et al., 2006; Peng et al., 2007; Yum and Hudson, 2005]. However, in updraft-limited
regime, S and Sk are comparable, which leads to a small driving force, positive dependence of growth rate
on radius (the dominance of the second term in equation (A3) in Appendix A), and spectral broadening.
The spectral broadening in updraft-limited regime is suppressed with increasing Na, which causes decrease
of εwith increasing Na. The radius growth rate as a function of particle radius at the transitional point exhibits
an intermediate behavior. These results reinforce the importance to consider the curvature and solute effects
and resemble somewhat the so-called ripening process [Çelik and Marwitz, 1999; Wood et al., 2002].

4. Important Implications for Aerosol Indirect Effects

Stevens and Feingold [2009] pointed out that changes in the system in isolation may be canceled, or compen-
sated for, by an opposing change that becomes evident when the system is looked at as a whole. Liu and
Daum [2002] showed that a larger ε leads to a larger droplet effective radius, a smaller albedo, and thus warm-
ing effect on climate that negates part of the cooling effect from the increased droplet concentration. Liu
et al. [2008] further showed that the magnitude of ε is proportional to that of the number effect, and thus
accounting for dispersion effect likely reduces the intermodel discrepancy of aerosol indirect effect as well.
Climate model simulations that consider the dispersion effect largely confirmed these results as well [Peng
and Lohmann, 2003; Penner et al., 2006; Rotstayn and Liu, 2003, 2009].

The new finding of unique regime dependence of Nc and ε in this study further reinforces and extends the com-
pensating role of dispersion effect to the updraft-limited regime: dispersion effect is warming and offsets the
cooling of the number effect when the number effect is strong in the aerosol-limited regimewhereas it is cooling
and enhances the cooling of the number effect when the number effect is weak in the updraft-limited regime.

5. Conclusions

The responses of cloud droplet number concentration and relative dispersion to changes in aerosol number
concentration and vertical velocity are investigated together by performing parcel model simulations with
wide ranges of aerosol concentration and updraft velocity that cover virtually all likely cases of ambient
clouds, improving our understanding of regime dependence of aerosol-cloud interactions, reconciling
conflicting observations on dispersion effect, and reducing intermodel uncertainties in aerosol indirect
effects. It is shown that combined consideration of droplet number concentration and relative dispersion
(i.e., ratio of standard deviation to the mean radius of the cloud droplet size distribution) provides a more
complete description of regime dependence of aerosol-cloud interactions than considering droplet number
concentration alone: relative dispersion increases with increasing aerosol concentration in the aerosol-limited
regime, peaks at a certain aerosol concentration in the transitional regime, and decreases with further increas-
ing aerosol concentration in the updraft-limited regime. This new finding further reconciles contrasting obser-
vations in literature as a manifestation of regime dependence of relative dispersion. The contrasting behaviors
of dispersion effect between the aerosol-limited and updraft-limited regimes reinforce the compensating role of
dispersioneffect,whichnegates thecoolingeffectwhenthenumbereffect is strong in theaerosol-limited regime
but enhances the coolingwhen thenumber effect isweak in the updraft-limited regime, thus helping reduce the
uncertainty in aerosol indirect effects in climate models. The conspicuous peak behavior of relative dispersion
further defines a new expression that quantifies the relationship between the transitional aerosol number
concentration and vertical velocity and separates the aerosol- and updraft-limited regimes.

The following points are noteworthy for the future study. First, in addition to the primary impacts from aerosol
number concentration andvertical velocity, “aerosol secondaryparameters (i.e., aerosol chemical composition,
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mean radius, and spectral shape)” are also expected to affect the regime classification [Feingold and Chuang,
2002; Shantz et al., 2003, 2008, 2010; Xue and Feingold, 2004]. Second, this study is mainly concerned with
the results at the level of maximum supersaturation like most previous studies. It is worthwhile to examine
theheight dependenceof the aerosol-cloud interaction regimes. Finally, this study focuses onadiabatic clouds.
The effect of entrainment-mixing processes will be investigated with an entraining cloud parcel.

Appendix A: Theoretical Analysis of Dependence of Growth Rate on Droplet Radius

The diffusive growth rate of a cloud droplet is described by equation (A1):

dr
dt

¼ 1
r
S� Sk
G

; (A1)

G ¼ RTρw
MwD′

ves Tð Þ þ
lvρw

Mwk
′
T T

lv
RT

� 1

� �
1þ Skð Þ

" #�1

; (A2)

where S is the parcel supersaturation, Sk is the particle equilibrium supersaturation, r is the particle radius, t is
time, R is the gas constant, T is the air temperature,Mw is the mole mass of water, ρw is the water density, es is
the saturation vapor pressure, and lv is the latent heat. D′v and k′T are the modified diffusion coefficient and
thermal conductivity including near droplet surface modification [Lamb and Verlinde, 2011]. Note that Sk is
often ignored in the calculation of G.

Taking the first derivative of equation (A1) with respect to droplet radius leads to equation (A3).

d dr
dt

� �
dr

¼ � 1
rG

S� Sk
r

þ dSk
dr

� �
(A3)

A negative value of the left-hand side (LHS) of equation (A3) indicates that the cloud droplet distribution nar-
rows because larger droplet grows slower than smaller droplets whereas a positive LHS value indicates that
the cloud droplet distribution broadens because larger droplets grow faster than smaller droplets. Neglecting
the curvature and solute effects (Sk≡ 0), cloud droplet distribution would narrow during condensational
growth (termed as condensational narrowing). This assumption holds when S is much larger than Sk, and
the first term dominates on the right-hand side (RHS) of equation (A3) as in aerosol-limited regime (see main
body text). However, when S and Sk are comparable, the first term in the bracket on the right-hand side of
equation (A3) is negligibly small and the second term dominates, which leads to droplet growth rate increas-
ing with droplet radius, because Sk decreases with particle sizes when particles are larger than their critical
radii based on the Kӧhler theory [Kӧhler, 1936; Pruppacher and Klett, 1997].
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